

Updates on biomass burning in relationship with vegetation type

M. Adam¹, K. Fragkos¹, S. Solomos², L. Belegante¹, D. Ene¹, V. Nicolae¹, L. Janicka³, V. Amiridis⁴

¹ National Institute of Research and Development for Optoelectronics - INOE 2000, 409 Atomistilor St, Magurele, Romania

²Research Centre for Atmospheric Physics and Climatology, Academy of Athens, Athens, Greece

³Faculty of Physics, University of Warsaw, 02-093, Warsaw, Poland

⁴Institute of Astronomy, Astrophysics, Space Applications & Remote Sensing, National Observatory of Athens, Athens, Greece

Context

Follows the study by Adam et al. over biomass burning measured by lidars in EARLINET and [1-2].

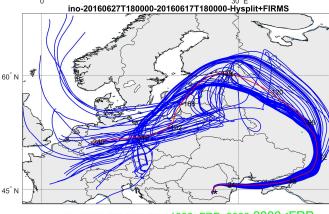
Objectives

Find a relationship between land cover type and smoke intensive parameters retrieved from lidar measurements

Input

- INOE 2000 multiwavelength Raman lidar data (26/108 3+2+1 datasets selected, having 39 layers)
- >HYSPLIT ensemble backtrajectories [3]
- ➢ MODIS FIRMS and land cover data [4-5]

Methodology


- ► Quality control (QC) data
- > Determine intensive parameters (IPs) from 3+2+1 data
- Assess aerosol layers [6]
- ≻Compute ensemble HYSPLIT backtrajectories:
 - at least 30 trajectories at altitudes inside the layer
 - compute mean trajectory using HYSPLIT 'cluster analysis'
- ≻Get fire's location along the mean trajectory
- \triangleright Asses injection height I_{h} [7]
- Evaluate land cover type

Challenges

- accuracy backtrajectory
- ✤accuracy injection height
- Iidar data availability for statistics
- assess 'mixed smoke'

Case study

Lidar measurement: 27 June 2016, ~18:00 UTC

FRP<100 100<FRP<500 500<FRP<1000 1000<FRP<2000 2000<FRP

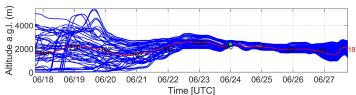


Fig. 1. HYSPLIT Ensemble trajectories (along with the mean trajectory in red) arriving at Magurele at every 50 m between 1323 and 2723m height, 27 June 2016, 1800UTC. The lower plot shows the altitudes of the air mass a.g.l. The location of the fires is shown in green.

Table 1. Intensive parameters for the layer at 1323-2723m.

LR@ 355 [sr]	LR@ 532		EAE@ 355/5		BAE@ 355/5		BAE@ 532/1		PLDR@ 532 [%	
63 ±	41	±	1.45	±	0.37	±	1.6	±	2.4	
0.6	2.5		0.15		0.04		0.03		±0.1	

Two fires were observed in W Russia (3.85km apart) ~ 90h back, detected twice. First fire has FRP 53.7MW and the second has FRP 13.5MW. For the second, the highest land cover type (40%) is urban.

Table 2. Air mass and fires' coordinates corresponding to smoke lidar measurement at ~18.00 on 27 lune 2016

Time air mass	LON air mass	LAT air mass	ALT air mass	Time fire	LON fire	LAT fire	FRP [MW]	I _h [m]
24/06 00:00	40.833	52.927	2395	23/06 23:58	39.6375	52.5489	53.7	4118
24/06 00:00	40.883	52.927	2395	23/06 23:58	39.5806	52.5493	13.5	2403
23/06 23:00	40.721	53.089	2360	23/06 23:58	39.6375	52.5489	53.7	4118
23/06 23:00	40.721	53.089	2360	23/06 23:58	39.5806	52.5493	13.5	2403

Water

Table 3. Land cover for fires' location. Vegetation type

- mass)
- PVT IPs relationships

Acknowledgements:

2	2	Grasses or cereal	14	12		
	3	Shrubs	0	0		
	4	broadleaf crops	0	0		
	5	savannah	11	5		
nt	6	evergreen broadleaf forest	0	0		
2]	7	deciduous broadleaf forest	41	22		
e 8	8	evergreen needleleaf forest	32	21		
	9	deciduous needleleaf forest	0	0		
	10	Unvegetated	0	0		
S	11	Urban	2	40		
<u>ces</u> lam et al., <i>Atmos. Chem. Phys.</i> , 20, 13905–13927, 2020 lam et al., ELC 2020, S03P036, 2020						

Fire

[%]

0

Fire

[%]

Romanian National	1)	Adam et al., Atmos. Chem. Phys., 20, 13905–13927, 2020
contracts	2)	Adam et al., ELC 2020, S03P036, 2020
18N/08.02.2019,	3)	Rolph et al., Environ. Modell. Soft., 95, 210–228
19PFE/17.10.2018 and	4)	https://lpdaac.usgs.gov/products/mcd12c1v006/ (MCD12C1v006)
PN-III-P2-2.1-PED-2019-	5)	https://firms.modaps.eosdis.nasa.gov/
1816.	6)	Adam et al., ELC2021, S02P12
Contact:	7)	Amiridis et al., Atmos. Chem. Phys., 10, 11567–11576, 2010.
mariana.adam@inoe.ro	8)	Nicolae et al., J. Geophys. Res., 118,2956-2965, 2013.

>1,4 => fresh smoke [8]. Next steps:

Statistics over 39 layers: - Layers affected by the

fires $(I_{h}$ >altitude air

- Calculate predominan vegetation type PVT [2 as the vegetation type with \geq 50% coverage

Referen

LR@532<LR@355 and EAE