

## Biomass Burning Recorded By Lidar In Relationship With Vegetation Type



M. Adam<sup>1</sup>, K. Fragkos<sup>1</sup>, D. Nicolae<sup>1</sup>, L. Belegante<sup>1</sup>, D. Ene<sup>1</sup>, V. Nicolae<sup>1</sup>

<sup>1</sup> National Institute of Research and Development for Optoelectronics - INOE 2000, 409 Atomistilor St, Magurele, Romania

#### **Objectives**

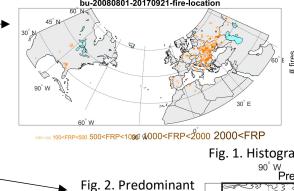
- ☐ characterize the "mixed smoke"<sup>1,2</sup> measurements and thus the main burnt vegetation type from which the smoke originates.
- ☐ investigate if there is a specific relationship between biomass burning (BB) from various vegetation types and aerosol intensive parameters (IPs).

#### Input

- > IPs from lidar measurements (2008-2017, Bucharest station).
- ➤ land cover data³ provided by MODIS for each year
- > FIRMS database<sup>4</sup> to extract the fires contributing to the measured smoke.

#### Methodology

- Use average values for land cover (11 types) over entire period.
- > Extract the vegetation type for each fire contributing to smoke measurement
- For each fire, define 'predominant' vegetation type' (PVT) as the one for which the coverage percentage was > 50 %. The other cases were labelled as mixed.
- For a smoke layer, the overall predominant vegetation (OPVT) type is taken as the most frequent value of all PVTs.


### **Preliminary results**

Vegetation type

**OPVT** 

Histogram of IPs versus

Location of the fires contributing to smoke measurements in Bucharest. (1122 fires /detected 1965 times contributed to 123 smoke layers /84-time stamps) PVT at fires' location



description.

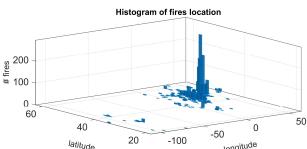



Fig. 1. Histogram of the fires' location.

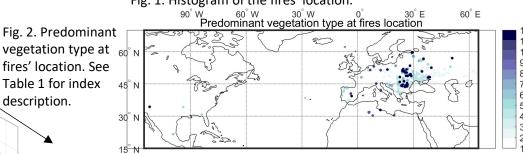



Table 1. Vegetation type (%)

|  | 1 | water                      | 0.51 | 7  | deciduous broadleaf forest  | 2.2  |
|--|---|----------------------------|------|----|-----------------------------|------|
|  | 2 | grasses or cereal          | 42   | 8  | evergreen needleleaf forest |      |
|  | 3 | Shrubs                     | 0    | 9  | deciduous needleleaf forest | 0    |
|  | 4 | broadleaf crops            | 41   |    | unvegetated                 | 1.6  |
|  | 5 | savannah                   | 6    | 11 | urban                       | 0.76 |
|  | 6 | evergreen broadleaf forest | 0.1  | 12 | mixed                       | 6.1  |
|  |   | -                          |      |    | -                           | -    |

| OPVT OPVT O                                  | 8 10 12<br>PVT |
|----------------------------------------------|----------------|
| SAE332 1 0 2 4 6 8 10 12 SAE327064 0 2 4 6 0 | 8 10 12<br>PVT |

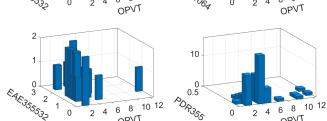



Fig. 3. 2D histogram of IPs versus overall predominant vegetation type. See Table 1 for index description.

Contact: mariana.adam@inoe.ro

Acknowledgements: This work was supported by the Romanian National contracts 18N/08.02.2019, 19PFE/17.10.2018, PN-III-P2-2.1-PED-2019-1816 and PN-III-P2-2.1-PED-2019-3495.

# **Current findings**

> Categories contributing the most to smoke measurements: grasses or cereal (2) and broadleaf crops (4).

In average, category 2 => aged smoke, category 4 => fresh smoke

| maverage, category 2 - agea smoke, |                |           |           |                  |      | mone, car      | category i i inestratione |                   |            |  |
|------------------------------------|----------------|-----------|-----------|------------------|------|----------------|---------------------------|-------------------|------------|--|
|                                    | Mean<br>values | LR<br>355 | LR<br>532 | CR <sub>LR</sub> | EAE  | BAE<br>355/532 | BAE<br>532/1064           | CR <sub>BAE</sub> | PDR<br>532 |  |
|                                    | Cat. 2         | 48        | 57        | 1.2              | 0.98 | 1.4            | 1.2                       | 0.9               | 6.3%       |  |
|                                    | Cat. 4         | 53        | 53        | 1                | 1.82 | 1.3            | 1.3                       | 0.97              | 4.5%       |  |

#### References

- 1) Adam et al., https://acp.copernicus.org/preprints/acp-2020-320/
- 2) Adam et al., https://acp.copernicus.org/preprints/acp-2020-647/
- 3) https://lpdaac.usgs.gov/products/mcd12c1v006/ (MCD12C1v006)
- 4) https://firms.modaps.eosdis.nasa.gov/